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Abstract

Surveillance cameras have been widely used in differen-

t scenes. Accordingly, a demanding need is to recognize

a person under different cameras, which is called person

re-identification. This topic has gained increasing inter-

ests in computer vision recently. However, less attention

has been paid to video-based approaches, compared with

image-based ones. Two steps are usually involved in previ-

ous approaches, namely feature learning and metric learn-

ing. But most of the existing approaches only focus on ei-

ther feature learning or metric learning. Meanwhile, many

of them do not take full use of the temporal and spatial in-

formation. In this paper, we concentrate on video-based

person re-identification and build an end-to-end deep neu-

ral network architecture to jointly learn features and met-

rics. The proposed method can automatically pick out the

most discriminative frames in a given video by a tempo-

ral attention model. Moreover, it integrates the surrounding

information at each location by a spatial recurrent mod-

el when measuring the similarity with another pedestrian

video. That is, our method handles spatial and temporal

information simultaneously in a unified manner. The care-

fully designed experiments on three public datasets show

the effectiveness of each component of the proposed deep

network, performing better in comparison with the state-of-

the-art methods.

1. Introduction

The person re-identification research aims to develop

methods for matching pedestrian images/videos under two

non-overlapping cameras. It draws increasing attention in

computer vision because of a wide range of potential appli-

cations, such as the security in public places and criminal

Figure 1: The top tries to explain that different frames in an

image sequence provide different information. In this case,

we want to recognize a girl wearing skirt. So “good” frames

are those where the girl can be clearly watched, marked by

green ticks. While “bad” ones are marked by red crosses

and less important ones are marked by gray questions. The

bottom is to illustrate that when matching two image se-

quences, we need to consider the surrounding pixels around

each location. The figures throughout this paper are best

viewed in colors.

investigation. And more importantly, deep neural network-

s have shown to be effective for person re-identification,

and have achieved much better performance than traditional

methods [1, 6, 9, 12, 13, 18, 25, 36, 38].

In general, person re-identification methods can be clas-

sified into two categories, i.e., single static image-based ap-

proaches and the video-based ones. A large portion of exist-

ing works lies in the former category [7, 21, 28, 32, 33, 34]

while only a few belong to the latter. Actually, video-based

person re-identification is closer to practical applications s-

ince we do not need to manually pick out the desired im-
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ages in a video, which are used to compare with images in

another video. Furthermore, videos contain richer informa-

tion than a single image [19, 20], which is beneficial for

identifying a person under complex conditions, including

occlusions, and the changes of illumination and viewpoint.

Therefore, in this paper we will focus on video-based per-

son re-identification.

Person re-identification methods generally involve two

key steps, namely feature learning and metric learning. Fea-

ture learning aims at designing algorithms to generate dis-

criminative features. Two pedestrian videos are matched if

the distance/similarity between their features is the small-

est/highest in the gallery set. While metric learning refers

to develop metrics through which the similarity between t-

wo matched videos of the same pedestrian is higher than

that between videos of different pedestrians. Most previous

works on video-based person re-identification [22, 29, 37]

pay attention to feature learning or metric learning indepen-

dently. A recent trend is to design a deep neural network,

say Convolutional Neural Network (CNN) [17] or Recur-

rent Neural Network (RNN) [26], to learn features [23, 39]

or metrics [31]. In this paper, to leverage the merits of both

feature learning and metric learning, we construct an end-

to-end deep neural network architecture to learn them si-

multaneously.

As shown on the top of Figure 1, in a given image se-

quence, we observe that not all images are informative. The

previous methods may be even confused if the occlusion is

heavy. In this case, it is natural to expect that the desired

person re-identification method can focus on those “good”

images, which present relatively clear foreground. Hence

in this paper we implement this idea by a temporal atten-

tion model (TAM), which exploits the temporal recurrent

neural network [35] to assign a changeable weight to differ-

ent frames in an image sequence. This enables the proposed

method to selectively pay attention to more relevant images,

thus further improving the performance of feature learning.

When comparing the similarity between two image se-

quences, the common way is to calculate the distance be-

tween their feature representations, which ignores the s-

patial difference during the sequence. As pictured on the

bottom of Figure 1, in this paper the similarity between

two corresponding location in a pair of image sequences

is the integration of the surrounding information. There-

fore, the proposed method is able to perform better metrics.

We achieve this goal by the spatial recurrent model (SRM),

which sweeps the image sequence along predefined direc-

tions.

We summarize the contributions of this work in three

folds as follows.

1. Using the temporal attention model (TAM), we can

measure the importance of each frame in a pedestrian

video, which is useful for choosing more informative

frames and thus improving feature learning.

2. The spatial recurrent model (SRM) is beneficial for ex-

ploring contextual information, which has been exper-

imentally demonstrated effective for metric learning.

3. Feature learning and metric learning are incorporated

into an end-to-end deep architecture, together with the

aforementioned TAM and SRM, which achieves better

results than the state-of-the-art methods.

The rest of this paper is organized as follows. In Sec-

tion 2, we will review related works. Section 3 will first

present the overall architecture of the proposed method, and

then explain each important component in more details. Ex-

perimental results on three public datasets will be given in

Section 4. At last we conclude this paper in Section 5.

2. Related Work

In this section, we first review some related works in per-

son re-identification, especially those video-based methods

and deep neural network based methods. Then we describe

related works about spatial RNNs and temporal RNNs.

2.1. Person Reidentification Methods

Wang et al. [29] aim at selecting discriminative video

fragments. They firstly choose the frames with the maxi-

mum or minimum flow energy, which is computed by op-

tical flow fields. These selected frames, together with their

contextual frames, comprise the so-called video fragments.

HOG3D [16] is chosen as the feature extraction method for

each video fragment. The similarity between two videos is

the highest similarity between their video fragments. Liu et

al. [22] try to extract features that encode the spatially and

temporally aligned appearance of a pedestrian. They firstly

detect the walking cycles by using the regulated flow en-

ergy profile and then split the whole video into segments.

As to spatial alignment, the human body is described by six

rectangles corresponding to the different body parts.

McLaughlin et al. [23] build a CNN to extract features

of each frame and then apply an RNN to exploit the tem-

poral information. A temporal pooling layer is adopted to

summarize the output feature at each time step as the fi-

nal representation. The input is a pair of image sequences

and their corresponding optical flows. Besides the match-

ing loss, each stream has an individual identity loss. Wu et

al. [31] present a similar network architecture. Given a pair

of pedestrian videos, they jointly train the convolution net-

work and the recurrent layer to learn spatial-temporal fea-

tures and the corresponding similarity.

Wang et al. [28] evaluate two different strategies for

image-based person re-identification, i.e., single-image and

cross-image representations. The former is learned by an

identity classification task and the latter is obtained by a
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Figure 2: The proposed network architecture. The green boxes are designed for the process of feature learning and the blue

ones are for metric learning. The weights of all convolution layers are shared for both processes.

matching task. They mix these two strategies together to

learn features and metrics simultaneously and obtain better

results than any individual one does.

The proposed method in this paper avoids evaluating

frames by hand-crafted features as [29]. It learns the weight

of each frame by the temporal RNN. Based on these learned

weights, the input of each time step of the temporal RNN is

the weighted average of the image sequence. This can be

regarded as an implicitly temporal alignment as [22]. As

shown in Figure 2, our model is built upon [23, 28]. It

accepts a triplet of image sequences as the inputs. After

extracting features by a CNN, we apply a temporal RNN

to improve feature learning. Meanwhile, spatial RNNs are

exploited to learn a good metric. Therefore, the proposed

method jointly performs feature learning and metric learn-

ing, and integrates both temporal and spatial information at

the same time.

2.2. Spatial RNNs and Temporal RNNs

Except those exploiting RNNs for video-based person

re-identification [23, 31], there are some other differen-

t RNNs in image-based approaches. Liu et al. [21] apply an

attention model to learn the weight of each pixel in an im-

age. Haque et al. [2] use an attention model for the depth da-

ta, which learns for localizing a specific region. In this pa-

per, we use a similar attention mechanism as in [35], which

attempts to describe a video with proper words. The pro-

posed method selectively focuses on truly relevant frames

as shown on the top of Figure 1.

There are several works running an RNN spatially over a

feature map. Byeon et al. [5] propose an RNN that sweeps

horizontally and vertically in both directions across an im-

age. Visin et al. [27] take a similar mechanism to consid-

er the surrounding information for semantic segmentation.

Bell et al. [3] exploit spatial RNNs to compute contextual

features for object detection. In this paper, to measure the

similarity between two image sequences, we employ spatial

RNNs to integrate the surrounding similarities around each

location within the same frame and the similarities through

contextual frames.

3. The Proposed Method

In this section, we first present the overall architecture of

the proposed method, and then explain each of its important

components in more details.

3.1. Overall Architecture

Supposing each image sequence is represented as x =
{xt|xt ∈ R

D}Tt=1
. T is the length of the image sequence

and D is the dimension of images. As shown in Figure 2,

the proposed method accepts a triplet of image sequences as

the inputs. In each stream, we first employ a CNN to extract
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Figure 3: The structure of the temporal attention model.

The input is T feature maps of the fc7 layer of the image

sequence x. N is the batch size. After an attention sub-

net, a weighted average of the T features, x̄t, is obtained.

Then x̄t is fed into an RNN, which outputs the feature ot at

each time step. The final representation of x is the temporal

average pooling of {ot}
T
t=1

.

the feature of each image xi. We select CaffeNet1 for CNN,

which is similar to AlexNet [17] except that normalization

layers and pooling layers exchange the position. It has five

convolution layers (conv1∼conv5) and two fully connect-

ed layers (fc6∼fc7). We denote the CNN as f(x) and the

feature map of the fc7 layer as f(x)fc7.

Then a temporal attention model comes into play to ex-

plore temporal features, which comprises a sub-net to learn

the relevance of each frame and an RNN to learn feature

representations. The RNN can be expressed by

g(f(x)fc7) : R
T×D1 7→ R

D2 , (1)

where D1 and D2 are the dimensions of the fc7 layer and

the output of the RNN, respectively. The output of the tem-

poral RNN is denoted by F(x). For feature learning, the

triplet loss [24] is adopted to pull similar pairs and push

away dissimilar pairs.

Meanwhile, given a pair of image sequences xi and xj ,

we develop a new stream to separately learn the metric by

calculating the element-wise difference between f(xi)pool5
and f(xj)pool5. Then the feature maps will be fed into the

spatial recurrent model, which contains six RNNs. Each

RNN will sweep the feature map along a specific direction.

The output is further processed to generate the final prob-

ability that the image sequence pair is of the same person

or different people, which is denoted as M(xi, xj). In this

part, the person re-identification problem is regarded as bi-

nary classification task.

During testing, the final similarity between xi and xj can

1http://caffe.berkeleyvision.org/model zoo.html

Figure 4: The sub-net to learn the relevance of each im-

age in an image sequence, which is represented by ωt =
{ωt,i}

T
i=1

. The green lines indicate that they are fully con-

nected. The black ones stand for the element-wise sum or

inner product. The gray line refers to the softmax operation.

be calculated by

S(xi, xj) =
1

1 + F
(

F(xi),F(xj)
) + λM(xi, xj), (2)

where F (·, ·) is a distance measure, which is the normalized

Euclidean distance in this paper. λ is the trade off between

feature learning and metric learning, which is empirically

set to 1 in the experiments.

3.2. Temporal Attention Model (TAM) for Feature
Learning

To selectively focus on the most relevant images, an at-

tention mechanism is applied to explore the temporal struc-

ture of the given image sequence. The whole process of

TAM is shown in Figure 3. It consists of two parts, i.e., the

attention unit and the RNN unit. At each time step t, the

attention unit accepts {f(xt)fc7}
T
t=1

as the input and gen-

erates a weighted average of these features, i.e.,

x̄t =
T
∑

i=1

ωt,if(xi)fc7, (3)

where {ωt,i} is learned by a sub-net as shown in Figure 4.

ht−1 is the hidden state of the RNN at time step t − 1.

Uf(x)fc7, V ht−1 and Wzt−1 are obtained by the fully con-

nected layers. The softmax operation is used to guarantee

that
∑

i ωt,i = 1.

Then x̄t is fed into an RNN, where the Long Short-Term

Memory (LSTM) network [26] is adopted. The LSTM net-

work is able to summarize useful information within a long-

range sequence. The final representation of the image se-

quence is the temporal average pooling of its output at each

time [23].
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Figure 5: The complete process of the spatial recurrent model for metric learning. There are six spatial RNNs, rendered by

different colors. Reshape operations are ignored for better illustration. More details can be found in the context.

Figure 6: Demonstration of how the spatial RNN works.

There are six directions, indicated by different colors. Each

volume represents a location in the feature map.

3.3. Spatial Recurrent Model (SRM) for Metric
Learning

In this paper, the SRM is designed to deal with videos

and for metric learning, which contains six spatial RNNs.

As pictured in Figure 5, given a pair of inputs, f(xi)pool5
and f(xj)pool5 are mixed together by element-wise minus.

The resulting feature map can be regarded as the initial dis-

similarity map, followed by a convolution layer with a ker-

nel size of 1× 1. Six copies of the feature map are fed into

six spatial RNNs, respectively. Each spatial RNN sweeps

the feature map along a specific direction as shown in the

figure, i.e., forward and backward, from left to right and the

opposite, from bottom to top and the opposite. Afterwards,

the output of each spatial RNN is stacked together. Another

convolution layer with a kernel size of 1×1 follows to sum-

marize the contextual features. A fully connected layers are

placed at the end to capture high-order spatial relationships

within the contextual features.

Figure 7: By convolving the stacked outputs of six spatial

RNNs with a kernel size of 1 × 1, we obtain the integrated

difference at each location.

Figure 6 illustrates how each spatial RNN works. Each

direction is rendered by a specific color. The left is the in-

put feature map for spatial RNNs. The numbers in yellow

stand for the order along each direction. The middle shows

the process of an RNN. It accepts the inputs with the given

order and generates the outputs with the same order. The

right expresses that these outputs are placed as the same or-

der as the inputs in the feature map. The LSTM network is

selected for RNNs here.

The outputs of six spatial RNNs are then stacked togeth-

er before a convolution layer with an 1 × 1 kernel, produc-

ing the so-called contextual feature. We further explain the

meaning of this convolution. As demonstrated in Figure 7,

each location in the stacked feature map stands for the inte-

grated difference along a specific direction. Thus each loca-

tion in the feature map of the convolution layer is a combi-

nation of its six surrounding information. With the help of

the proposed SRM, the learned metric will be less sensitive

43254751



Datasets iLIDS-VID PRID2011 MARS

#identities 300 200 1,261

#track-lets 600 400 21K

#boxes 44K 40K 1M

#distractors 0 0 3K

#cameras 2 2 6

#resolution 64× 128 64× 128 128× 256
#detection hand hand algorithm

#evaluation CMC CMC CMC & mAP

Table 1: The basic information of three datasets to be used

in our experiments.

to illumination changes and occlusions.

4. Experiments

We evaluate our proposed method on three public video

datasets. The first part is to verify the effectiveness of the

proposed method and its components. And then we com-

pare our method with the state-of-the-art methods. The ex-

perimental results demonstrate that the proposed method

can enhance the performance of both feature learning and

metric learning and outperforms previous methods.

4.1. Datasets

The basic information of three datasets is listed in Ta-

ble 1 and some samples are displayed in Figure 8.

The iLIDS-VID dataset [29] comprises 600 image se-

quences of 300 subjects. Each image sequence has a vari-

able length ranging from 23 to 192 frames, with an averaged

number of 73. This dataset is challenging due to clothing

similarities among people and random occlusions.

The PRID2011 dataset [11] consists of 385 identities in

camera A and 749 in camera B. 200 identities appear in

both cameras, constituting of 400 image sequences. The

length of each image sequence varies from 5 to 675. Fol-

lowing [39], sequences with more than 21 frames are select-

ed, leading to 178 identities.

The Motion Analysis and Re-identification Set

(MARS) [39] is a newly released dataset for video-

based person re-identification. There are 1,261 pedestrians

who are captured by at least 2 cameras. The bounding

boxes are generated by a DPM detector [10] and a GMM-

CP tracker [8]. Among 20,715 track-lets, 3,248 distractor

track-lets are produced due to false detection or tracking.

4.2. Implementation Details

We select caffe [14] to implement experiments. CaffeNet

is adopted for CNN and LSTM for RNN. The length of an

image sequence is experimentally set to 6. The image se-

quence is randomly selected in a track-let. The dimensions

Figure 8: Samples of three datasets used in experiments.

The first row shows images from MARS. The following t-

wo rows are sampled from iLIDS-VID and PRID2011, re-

spectively.

of the fc6 layer and fc7 layer are set to 1,024.

We follow the same protocol [29] for the iLIDS-VID

and PRID2011, namely both datasets are evaluated over ten

train/test partitions. Each partition splits the dataset into two

equivalent parts, one for training and the other for testing.

The same experimental setup [39] is adopted for the MARS,

i.e., 625 subjects for training and the others for testing. And

there are totally 1,980 predefined track-lets in the gallery

set. The pedestrians in the training set and testing set are

non-overlapping for all three datasets. Images are firstly re-

sized to 227 × 227 to adjust CaffeNet. We also implement

mirror for data augmentation. To accelerate converge, hard

negative mining [24] is employed.

Testing a person re-identification system is a ranking

problem. Given a query in camera A, we need to calcu-

late the similarity between the query and each candidate

in the gallery set in another camera B. The expectation is

that the candidates of the same pedestrian in camera B will

rank at the top. To evaluate the performance, the Cumu-

lative Matching Characteristic (CMC) [4] curve and Mean

Average Precision (mAP) [40] are performed. The CMC

curve represents the expectation of the true matching being

found within the first n ranks. mAP takes recall into con-

sider when multiple ground truths exist. In our case, CMC

and mAP are equvalent for the iLIDS-VID and PRID2011

because they only contain one ground truth in the gallery

set while in the MARS multiple ground truths exist. There-

fore, both mAP and CMC will be reported for the MARS

and CMC is evaluated for the iLIDS-VID and PRID2011.

4.3. Effectiveness of Each Component

Table 2 summarizes the quantitative performance of the

baseline methods on the MARS dataset. “CNN” refers to

use a CNN to extract features of each frame and measure

the similarity by the Euclidean distance. The representa-

tion of an image sequence is obtained by using the average
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Dataset MARS

Rank@R R = 1 R = 5 R = 20 mAP

CNN 58.5 76.3 85.9 40.3

CNN+RNN 60.3 79.2 87.0 42.0

CNN+TAM 62.7 80.6 90.5 43.4

CNN+DIFF 63.0 81.1 91.5 44.8

CNN+SRM 64.2 84.4 94.3 46.2

ALL 70.6 90.0 97.6 50.7

Table 2: Performance of baseline methods on the MARS

dataset.

temporal pooling. “CNN+RNN” means that instead of us-

ing temporal pooling, an RNN is applied to further process

the features and generate the representation of the image

sequence. “CNN+TAM” is on top of “CNN+RNN” by ex-

ploiting the temporal attention model. “CNN+DIFF” is to

directly uses a fully connected layer instead of the spatial

RNNs within the SRM after the CNN. “CNN+SRM” is be-

yond “CNN+DIFF” by using the spatial recurrent model.

“ALL” is the proposed full architecture as pictured in Fig-

ure 2. Figure 9 shows the CMC curves of these baseline

methods on the MARS dataset. It is easy to draw the fol-

lowing conclusions from the above experimental results.

1. By comparing “CNN”, “CNN+RNN” and “CN-

N+TAM”, we can conclude that the recurrent atten-

tion model works, i.e., it can help to pick out relevant

frames.

2. “CNN+SRM” performs better than “CNN+DIFF”,

which tells that the spatial recurrent model helps to

learn better metrics.

3. “ALL” performs the best, which indicates that joint

feature learning and metric learning is better than per-

forming them separately.

Figure 10 provides four examples of retrieving. The

query in the first row is heavily occluded during the image

sequence. The image sequence for the second query suffers

apparent illumination changes compared with the matched

candidates. The third and fourth query image sequences

contain multiple evident pedestrians. Our method succeeds

in finding correct matched candidates at the top rank in the

first three examples, which shows the robustness of the pro-

posed method with respect to occlusions and illumination

changes. The last query fails to retrieve the same pedestrian

in another camera. The reason may be that the query con-

tains two equivalent identities in the whole image sequence.

Our model can not distinguish whether it is the boy or the

girl we want to recognize. In fact, our method has found the

girl in the first, sixth and seventeenth candidates.

Figure 9: CMC curves of baseline methods on the MARS

dataset.

4.4. Comparison with the Stateoftheart Methods

Table 3 summarizes the comparison of our method with

the state-of-the-art methods. The results on the iLIDS-VID

and PRID2011 are obtained by finetuning a pretrained mod-

el on the MARS. Wang et al. [29] and Wang et al. [30] pro-

pose the so-called flow energy to measure the importance

of each frame and accordingly select video fragments. Li-

u et al. [22] consider the temporal alignment and build a

spatial-temporal representation for each video. Karanam et

al. [15] propose to learn a dictionary that tries to encode fea-

tures discriminatingly and solve the problem of viewpoint

variations. You et al. [37] try to decrease the intra-class

difference of nearby positive samples and push away the n-

earest negative samples. Mclaughlin et al. [23] and Wu et

al. [31] take a similar deep neural network architecture, i.e.,

a CNN followed by an RNN. Zheng et al. [39] employ ID-

discriminative Embedding to directly train a classification

model. We achieve the best performance on both MARS

and PRID2011, and the comparable result on the iLIDS-

VID. The reason for the latter may be that Mclaughlin et

al. [23] use both color images and the corresponding opti-

cal flows while we only use color images. In the future, we

will try to combine multiple features as the inputs.

5. Conclusion

In this paper, we have proposed an end-to-end deep neu-

ral network architecture, which integrates a temporal atten-

tion model to selectively focus on the discriminative frames

and a spatial recurrent model to exploit the contextual in-

formation when measuring the similarity. We carefully de-

signed experiments to demonstrate the effectiveness of each

component of the proposed method. In comparison with

the state-of-the-art methods, our method performs the best,

which shows that the proposed temporal attention model is
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Figure 10: Retrieval results of the proposed method in the testing set of MARS. Image sequences in the first column represent

the query. The second column contains candidates in the gallery, where a single image stands for an image sequence for

visual-pleasing. Candidates with green boxes indicate that they belong to the same pedestrian as the query. While the red

boxes refer to wrong matched image sequences. The images with blue boxes imply that they are distractors, which negatively

affect the accuracy.

Datasets iLIDS-VID PRID2011 MARS

Rank@R R = 1 R = 5 R = 20 R = 1 R = 5 R = 20 R = 1 R = 5 R = 20 mAP

Wang et al. [29] 34.5 56.7 77.5 37.6 63.9 89.4 - - - -

Liu et al. [22] 44.3 71.7 91.7 64.1 87.3 92.0 - - - -

Karanam et al. [15] 25.9 48.2 68.9 40.6 69.7 85.6 - - - -

Wang et al. [30] 41.3 63.5 83.1 48.3 74.9 94.4 - - - -

You et al. [37] 56.3 87.6 98.3 56.7 80.0 93.6 - - - -

Mclaughlin et al. [23] 58 84 96 70 90 97 - - - -

Wu et al. [31] 46.1 76.8 95.6 69.0 88.4 96.4 - - - -

Zheng et al. [39] 53.0 81.4 95.1 77.3 93.5 99.3 68.3 82.6 89.4 49.3

Ours 55.2 86.5 97.0 79.4 94.4 99.3 70.6 90.0 97.6 50.7

Table 3: Comparison with the state-of-the-art methods. The highest values are shown in boldface. The literatures in the first

block are using traditional methods, while the second block contains deep neural network based methods.

useful for feature learning and the spatial recurrent model is

beneficial for metric learning.

In recent years, a lot of efforts have been made to im-

prove the performance in person re-identification. Howev-

er, it is still far from being available for practical applica-

tions. Current issues include serious occlusions, heavy illu-

mination changes, non-rigid deformation of human bodies,

clothing with similar colors or textures for different person-

s, and different clothings for the same person. Moreover,

it is time to highlight that the largest restriction for the per-

son re-identification research is the lack of very large scale

datasets where many practical issues should exist, especial-

ly when the deep neural networks become more and more

popular. Consequently, our future work lies in collecting as

many data as possible, covering scenes as widely as possi-

ble.
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